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Are Gaussian spectra a viable perceptual
assumption in color appearance?
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Natural illuminant and reflectance spectra can be roughly approximated by a linear model with as few as three
basis functions, and this has suggested that the visual system might construct a linear representation of the spectra
by estimating the weights of these functions. However, such models do not accommodate nonlinearities in color
appearance, such as the Abney effect. Previously, we found that these nonlinearities are qualitatively consistent
with a perceptual inference that stimulus spectra are instead roughly Gaussian, with the hue tied to the inferred
centroid of the spectrum [J. Vision 6(9), 12 (2006)]. Here, we examined to what extent a Gaussian inference pro-
vides a sufficient approximation of natural color signals. Reflectance and illuminant spectra from a wide set of
databases were analyzed to test how well the curves could be fit by either a simple Gaussian with three parameters
(amplitude, peak wavelength, and standard deviation) versus the first three principal component analysis com-
ponents of standard linear models. The resulting Gaussian fits were comparable to linear models with the same
degrees of freedom, suggesting that the Gaussian model could provide a plausible perceptual assumption about
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stimulus spectra for a trichromatic visual system. © 2012 Optical Society of America

OCIS codes:  330.0330, 330.1720.

1. INTRODUCTION

Normal human color vision is trichromatic and thus can repre-
sent the color of lights and surfaces with only three numbers
derived from the excitations of the three classes of cone
receptors. Considerable research has been undertaken to ad-
dress how—and how well—the underlying illuminant and
reflectance spectra can be reconstructed from three spectral
samples of the color signal reaching the eye. If illuminant and
reflectance spectra varied in random and arbitrary ways, then
the visual system could form little useful intuition about the
nature of the spectra. Yet natural spectra are instead broad
and smoothly varying and thus highly redundant [1-3]. As a
result, they can in general be represented with a small number
of parameters. However, which specific parameters the visual
system might try to estimate remains unknown.

Most analyses of spectral estimation are based on linear
models in which the spectra are approximated by a weighted
combination of basis functions describing the principal com-
ponents of variation in the stimulus. These models have pro-
vided powerful techniques for recovering spectra in imaging
and computer vision, and for understanding the capacities and
limitations of the human visual system for representing color
[4-6]. Estimates of the requisite number of basis functions for
a given task vary, yet many natural spectra can be reasonably
well approximated by as few as three components [7-9]. This
insight has proven a key factor in understanding the problem
of color constancy—and specifically for analyzing the ex-
tent to which the color appearance of surfaces can be main-
tained despite changes in the illuminant [10-12]. It has also
led to suggestions that the visual system itself might try to
encode spectra by estimating the weights of the inferred
functions [13].
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Alternatives to linear models remain relatively unexplored.
Golz and MacLeod [14,15] provided a theoretical analysis of
color constancy by approximating illuminant and reflectance
spectra as Gaussian functions. The spectra were thus de-
scribed by three parameters corresponding to the spectral
peak, standard deviation, and amplitude. As these authors
noted, a Gaussian model provides a number of computational
advantages, including a seamless representation from narrow
to broadband spectra, functions with all-positive values con-
sistent with physical spectra, and low dimensionality (be-
cause linear models typically include different components
for surfaces and illuminants and thus require six parameters
to specify the color signals, while the product of two Gaus-
sians is itself a Gaussian). The Gaussian model also has the
theoretical advantage of an intuitive correspondence between
the dimensions of stimulus variation and the dimensions of
color appearance. Simple aperture colors are described by
three perceptual attributes corresponding to the hue, satura-
tion, and brightness of the light, and these attributes have at
least a rough correspondence to the peak, standard deviation,
and intensity of the spectrum.

Mizokami et al. [16] examined inferences underlying color
coding by measuring how the hue of Gaussian spectra chan-
ged as its spectral bandwidth was varied. Linear models of
color vision (which are distinct from linear models of spectra)
assume that a given hue corresponds to a fixed balance of ac-
tivity across the cones or color-opponent mechanisms (e.g., as
a fixed ratio of the red—green and blue-yellow dimensions of
color appearance). Stimuli with the same hue but different sa-
turation should thus plot along a straight line emanating from
the white point in color space. However, varying the satura-
tion of Gaussian spectra instead alters the cone ratios, be-
cause as the bandwidth increases the spectrum becomes
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differentially filtered by the eye’s bandpass spectral sensitiv-
ity. Thus the chromaticities of Gaussian spectra with the same
peak but different bandwidths fall along curved loci in color
space. Mizokami et al. [16] found that when observers made
hue matches between narrow and broad Gaussians, they
tended to choose stimuli with the same spectral peak and thus
different cone ratios. Their result suggested that the visual sys-
tem might nonlinearly compensate for the eye’s spectral filter-
ing in order to tie the attribute of hue to a fixed property of the
stimulus (e.g., spectral peak) rather than a fixed property of
the response (e.g., constant response ratios in color-opponent
mechanisms). The fact that constant matches were predicted
by a property such as the spectral peak was further at least
suggestive of the possibility that the visual system might in-
corporate an inference such as Gaussian spectra to represent
color signals.

The nonlinear hue matches observed for Gaussian spectra
is also qualitatively consistent with a widely studied nonlinear-
ity in color appearance known as the Abney effect—in which
the hue of most wavelengths changes when mixed with a
white light [17-22]. In studies of the Abney effect, the wave-
length is diluted by adding a fixed desaturant (rather than
broadening the spectrum). In this case, the chromaticity of
the mixture varies between the fixed chromaticities of the
wavelength and the added white, and thus lies on a straight
line. Yet over most of the spectrum, to match the hue, obser-
vers must change the dominant wavelength of the mixture as
the purity varies, so that lines of constant hue are instead
curved. The nonlinear response can again be predicted if ob-
servers are “inferring” that the stimuli are Gaussian spectra
and trying to match the spectral peaks [16]. This suggests that
the Abney effect occurs because the visual system is fooled
into making the “right” response to the “wrong” stimulus
and in particular is applying a Gaussian inference to a non-
Gaussian stimulus. Quantitatively this account fails, because
as Mizokami et al. noted, the Gaussian assumption predicts
much larger hue shifts in the Abney effect at longer wave-
lengths than is actually observed [16]. Nevertheless, the pre-
sence of these nonlinearities in color appearance again
suggests that the visual system may be giving substantial
weight to a nonlinear inference about spectra.

In the present study, we asked how well a Gaussian model
could account for physical spectra. As noted, the utility of
linear models is that they can accurately approximate natural
spectra with a small number of parameters. The extent to
which the spectra can instead be approximated by a simple
Gaussian remains untested, though there are some natural re-
flectances, with, for example, the spectra of cutoff filters or of
additive mixtures of different narrowband spectra, for which
the fit is likely to be poor [23]. If in general natural color sig-
nals are poorly described by Gaussians, then this would argu-
ably be a poor model for simulating or analyzing the interplay
between lights and surfaces, and thus a poor assumption for
the visual system to adopt. To assess this, we examined a wide
range of illuminant and reflectance spectra from available da-
tabases, hyperspectral images, and our own measurements to
test how well the curves could be fit by either a simple Gaus-
sian with three parameters (amplitude, peak wavelength, and
standard deviation) versus the first three principal component
analysis (PCA) components of standard linear models. The re-
sults suggest that the approximations are nearly comparable
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in the two cases, and thus suggest that an inference like a
Gaussian model provides a viable perceptual assumption
for natural spectra.

2. ANALYSIS

A. Models

The left panels of Fig. 1 illustrate the Gaussian and linear func-
tions used for fitting the spectra. In the Gaussian model, both
illuminant and surface reflectance spectra S(1) were approxi-
mated by varying the amplitude (A), peak wavelength (peak),
and standard deviation (o) of the function:

S() = A - exp(-0.5((4 - peak)/o)?) for A>0
“ 1+ A-exp(-0.5((4-peak)/c)? forA <0’

where positive and negative values of A corresponded to
spectra with a peak or a trough, respectively.

In the linear models, the observed spectrum S(1) was fit by
a weighted sum of basis functions [S;(1), S5(4), and S3(4)]:

S(1) = M 1S () + M3S3(2) + M3S3(4),

where M |—Ms5 are the weights. The number of components
was limited to three so that the models had the same number
of parameters.

Note that unlike the Gaussian model, there is not a single
form of the linear model because the basis functions are spe-
cific to the datasets from which they are acquired. We exam-
ined two standard sets of basis functions. For reflectance
spectra, the fits were performed with the first three functions
derived by Cohen from a principal components analysis of
Munsell spectra [24]. Similar functions have been found for
a wide range of reflectances, and the Cohen functions have
thus been shown to provide a good approximation to many
surface spectra [2]. For illuminant spectra, we instead used
the principal components derived from a large sample of day-
light spectra by Judd et al. [25].

B. Datasets

We fit the spectra for a wide range of natural or naturalistic
reflectances and illuminants acquired from the following
sources:

a. Munsell colors matte (Joensuu Spectral Database)
[26,27]: the reflectance spectra of 1269 matte Munsell color
chips.

b. Cambridge database of natural spectra [28]: reflectance
spectra of fruits eaten by primates, foliage, and young edible
leaves in French Guiana and Uganda.

c. Standard object color spectra database for color repro-
duction evaluation (SOCS) (Japanese Standards Association)
[29]. Only datasets including natural spectra were used, con-
sisting of SOCS flower, SOCS leaves, SOCS Krinov, and
SOCS skin.

d. Hyperspectral images: downloadable scenes from the
hyperspectral images of natural rural scenes from the Minho
region of Portugal containing rocks, trees, leaves, grass, and
earth acquired by Nascimento et al. (scenes 1, 2, 3, 4 from
“hyperspectral images of natural_scenes, 2002”[30] and
scenes 1, 2, 3, 4, 5, 8 from “hyperspectral images of_natural _
scenes, 2004” [31]). Spectra were sampled from every 10th
pixel in the scenes.
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Fig. 1. Gaussian or linear models for reflectance or illuminants and fits to the spectra.

e. Daylight spectra from India and Nevada: illuminant
spectra acquired by the authors as part of another project [32].

f. Daylight spectra (Joensuu spectral database) [27]: a
sample of 15 different daylight illuminants.

C. Fitting Procedure

As shown in Fig. 1, the Gaussian and either PCA (linear) mod-
el were fit to each spectrum. Separate fits were estimated for
each dataset, because they corresponded to different classes
of objects or illuminants, as shown by the open circles in
Table 1. The representation of the spectra in the original
datasets were in terms of reflectance spectra (Joensuu [Mun-
sell], Cambridge database, and SOCS), radiance (hyperspec-
tral images), or illuminant spectra (daylight samples). Fits
were performed both for the reflectance spectra and ra-
diances converted by calculating the product of reflectance
and illuminant C.

For fitting, the spectra data were formatted to 400-700 nm
in 10nm steps except for SOCS_Krinov (ranging from
400-650nm) and the 2002 hyperspectral image set (ranging
from 410 to 700nm). The spectra were also normalized by
the maximum value within each dataset. Fits were performed
with the MATLAB optimization toolbox and the “Isqcurvefit”
function and the Levenberg-Marquardt algorithm and mini-

mized the root-mean-square (rms) error between the observed
and predicted spectra. Predicted spectral values could be ne-
gative. Fits to each spectrum were estimated five times with
different randomized initial values to avoid convergence at
local minima, with the reported results based on the best
fit in each case.

3. RESULTS

Figure 2 shows examples of the best and worst fits of the
Gaussian and linear models for the individual spectra of Mun-
sell reflectances. In the top panels, the criterion is based on
rms error, while in the bottom panels, the fits are instead com-
pared in terms of the resulting color difference (AE,;) in the
CIE L*a*b* space. We assessed the differences between the
model fits across the full set of spectra for each dataset. These
are shown in Figs. 3-5 for fits to the physical spectra, in terms
of both the average rms error and mean correlation coefficient
between the estimated and actual spectra. Asterisks above the
bars in the figures indicate significant differences (p < 0.05)
between the average error for the Gaussian versus linear fits,
based on the Wilcoxon test. Although the linear fits are super-
ior overall to the Gaussian fits for the reflectance spectra,
the approximations from the two models are nevertheless
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Table 1. Spectral Data for Fitting

Fitting Data
Dataset Spectra Type N Reflectance Tluminant Radiance
Joensuu (Munsell) reflectance 1269 O — O(illuminant C)
Cambridge database reflectance 1862 O — QO(lluminant C)
SOCS (flowers) reflectance 148 O — QO(lluminant C)
SOCS (leaves) reflectance 92 O — O(illuminant C)
SOCS (Krinov) reflectance 341 O — QO(illuminant C)
SOCS (skin) reflectance 2483 O — QO(lluminant C)
Natural scene 1 (02) radiance 6068 — — O
Natural scene 2 (02) radiance 5740 — — O
Natural scene 3 (02) radiance 6068 — — O
Natural scene 4 (02) radiance 3534 — — O
Natural scene 21 (04) radiance 13566 — — O
Natural scene 22 (04) radiance 13260 — — O
Natural scene 23 (04) radiance 12954 — — O
Natural scene 24 (04) radiance 12596 — — O
Natural scene 25 (04) radiance 11926 — — O
Natural scene 28 (04) radiance 13668 — — O
Joensuu (daylight) illuminant 15 — O —
Daylight (Sierra) illuminant 782 — O —
Daylight (India) illuminant 131 — O —

comparable, with smaller mean errors for the Gaussian
approximation for three of the six datasets (flower, Krinov,
and skin) (Fig. 3). Moreover, the two models perform roughly
equally well in approximating the spectra when the spectra
are converted to radiance under the illuminant C source. This
is also seen in the fits to the radiance spectra for the hyper-
spectral images (Fig. 4). Thus the two models reconstruct the
radiance spectra with a similar level of accuracy. Conversely,
for the illuminant spectra, the fits are consistently better with
the linear model (Fig. 5).

A better overall fit with the linear models for the reflectance
and illuminant spectra is not surprising, for as noted, we used
separate basis sets that were derived from each class of spec-
tra and thus optimized for these spectra. In contrast, the Gaus-
sian model has the same functional form in all cases. The fact
that it can nevertheless perform reasonably well suggests that
it can provide a reasonable and general approximation for
many natural color signals. In contrast, there is no established
single set of linear functions appropriate for estimating spec-
tra (and thus no clear general basis set that the visual system
should adopt) [6]. For example, Fig. 6 compares the models
when we instead used the illuminant basis functions to predict
the reflectance spectra and vice versa. In this case, the Gaus-
sian model is superior in most cases.

The fits to the physical spectra do not indicate the visual
consequences of errors in the approximations. To examine
these, we also calculated the chromaticity coordinates for the
actual and estimated spectra for the Munsell samples under
illuminant C. These coordinates are plotted on the CIE 1931
2y chromaticity diagram and the CIE 1976 a*b* plane in Fig. 7.
In this case, the mean color difference AE,;, between the lin-
ear approximation and original functions (AE,, mean, 4.26;
s.d., 3.65) is roughly half the error between the Gaussian
and original (AE,, mean, 8.82; s.d., 7.50), which is perhaps
again to be expected because the basis functions were directly
derived for Munsell samples. Nevertheless, both models pre-
serve the general structure of the chromatic variations.

However, a notable deviation in the Gaussian model is in
the chromaticities for the more saturated orange and reddish
spectra, where the predicted chromaticities form a tail conver-
ging onto the spectral locus. The lower left panel of Fig. 2 (for
Munsell spectrum 29) provides an illustration of why the
Gaussian approximation breaks down for these samples. Be-
cause a simple Gaussian of the type we modeled has only a
single parameter to control dispersion, it cannot capture a
steep steplike change from a nonzero baseline. Saturated or-
anges and reds are approximated by narrowband spectra with
longwave peaks. These effectively stimulate only the L and M
cones, and thus the chromaticities remain close to the long-
wave tail of the spectral locus.

This behavior of the Gaussian model at longer wavelengths
can also account for the breakdown of the Gaussian predic-
tions for the Abney effect at longer wavelengths, as noted by
Mizokami et al. [16]. Again they found that the predicted hue
shifts were much larger than observed at these wavelengths.
This is likely because broadening the spectra initially shifts
the chromaticity along the spectral locus rather than toward
the white point, so that there is in fact no corresponding Gaus-
sian stimulus with the chromaticity of some mixtures of a
narrowband long wavelength with white light. This is further
shown in Fig. 8(a), which plots the range of chromaticities
that can be created by a simple Gaussian spectrum with a po-
sitive (black) or negative (red) peak. Over much of the region
from purple to red, there is no corresponding spectrum. Con-
sequently, a deficiency of the simple Gaussian model is that it
does not entirely pave the space and thus could not provide a
common general assumption about all chromaticities. On the
other hand, it extends over a much greater gamut than three
component linear models that have been derived from and are
thus optimized only for broad natural spectra [Fig. 8(b), black
symbols].

4. DISCUSSION

As noted in the Introduction, previous studies have mo-
deled natural spectra as Gaussians in order to explore
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Fig. 2. Examples of best and worst fits to individual spectra from the Munsell set. Top, spectral reflectance of surfaces with the smallest and the
largest rms between original and fitting curves. Left: Gaussian fit for reflectance data no. 972 (rms = 0.0018, thin line) and no. 364 (rms = 0.12, thick
line). Right, linear fit for reflectance data no. 564 (rms = 0.0015, thin line) and no. 71 (rms = 0.10, thick line). Solid and dashed lines show original
and fitting spectra, respectively. Bottom, best and worst fits by the criterion of AE,;. Left, Gaussian fit for reflectance data no. 292 (AE,;, = 0.49,
thin line) and no. 29 (AE,, = 74, thick line). Right, linear fit for reflectance data no. 650 (AE,, = 0.096, thin line) and no. 1058 (AE,, = 33, thick

line).

characteristics of color appearance. Golz and MacLeod [14,15]
examined color constancy—specifically how well the visual
system could recover surface color under a change in illumi-
nation. They showed that in a perfect Gaussian world, cone-
specific normalization could completely compensate for the
chromaticity of the surface but not for the lightness, and they
suggested that this pattern was consistent with a major con-
tribution of von Kries adaptation to color constancy [33-36].
This analysis depends on how well simple Gaussians can ap-
proximate illuminant and reflectance spectra as well as the
photoreceptor sensitivities. Our results suggest that they
can describe natural color signals about as well as a linear mo-
del with the same number of parameters, and thus they do
provide an equally reasonable model for simulating spectra.

Mizokami et al. [16] instead measured the perceived hue of
actual Gaussian spectra. Their study was designed to measure
hue constancy—specifically whether constant hues could be
associated with constant physical features of the spectra. As
noted, they found that for lights differing in bandwidth, con-
stant hues were tied to roughly a constant spectral peak, even
though these lights corresponded to different vector direc-

tions in the cone-opponent space. From this they suggested
that the visual system might infer Gaussian-like spectra and
try to represent hue by estimating the spectral peak. This in-
ference would seem of questionable value if the spectra varied
in ways that did not have a simple maximum. Yet again our
results suggest that representing the color signal as a Gaussian
would provide roughly the same predictive value as a repre-
sentation in terms of linear basis functions. Thus in both cases
a Gaussian model could provide a viable perceptual inference
about natural spectra.

Importantly, the Gaussian model was not better than the
linear approximation, and for some classes of spectra (e.g.,
illuminants) it was consistently worse. These comparisons de-
pend on the specific application, for linear models have the
advantage that they can be optimized for specific contexts,
while the Gaussian model we used has the advantage that
it is independent of any specific choice of samples. Moreover,
it is well established that three basis functions are, in many
cases, insufficient for accurately characterizing physical
spectra [2,8,9]. A Gaussian model performed no better, and
on average it accounted for only about 56% of the variance



Y. Mizokami and M. A. Webster

012 Reflectance, rms
Kk kkk

0.1
® 0.08
1
-
< 0.06
©
()
€ 0.04

0.02 -

0_
50 90
515 Radiance, rms
%k kk n.s. n.s. n.s. kksk

0.1
® 0.08
1S
L
< 0.06
©
()
€ 0.04

0.02 -

0_
\\A\“\Se \0(\(\%6 /Q\Q\Ne ’\ea\les /\,«\(\0 /S\(\\“

00%  oC

Fig. 3.

Vol. 29, No. 2 / February 2012 / J. Opt. Soc. Am. A Alb5
I Gaussian
il Reflectance, r [ Linear
12 *kok *kk kKK *ksk n.s. Fkk
1 -
.
c 081
3
= 0.6
0.4 1
0.2 4
04 .
e eX es A
\“\56 ‘0(\(\% ,»g\o“ eV ,\,\\'\(\ o
N\ 0 0C 5005 % 50
adiance, r
14 Reid
] koK *okok n.s. *okok Kok koK
1 -
L
c 084
3
£ 0.6
0.4 1
0.2 1
0 ol
e el es o\l O
u(\‘:’e \(,(\é‘g ,&\o‘N B ea\' ,\q\(\ os5°
N\ 0 5005 50(-"5 ¥ =)

(Color online) Results of Gaussian and Lmear fits to reflectance databases. Left panels, mean rms error; right panels, mean correlation

coefficient (). Error bars indicate standard deviation within each dataset. Significant differences between the linear and Gaussian fits are shown by

the symbols above the bars [«(p < 0.05), * * (p < 0.01), * % *(p < 0.001)].

(compared to 60% for the linear models we tested). Thus if the
goal of an analysis requires a high fidelity of the represented
spectrum, then higher dimensional models will usually be ne-
cessary. Finally, while we chose Gaussians for their simplicity,
it remains possible that there are other functional forms that
would describe spectra more accurately or would have the
advantage of capturing the causal structure of color signals
[2,5,23]. A chief advantage of the Gaussian model is that it pro-
vides a computationally simple model with parameters that
can be intuitively associated with the primary attributes of col-
or appearance. Here again, there are very different functions
that might share these features. For example, Logvinenko re-
cently proposed an object color space based on step functions
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which again have parameters that loosely correspond to hue,
saturation, and brightness [37]. However, it remains untested
how well these functions would fit natural spectra or whether
they would predict similar patterns of nonlinear variation in
hue and saturation.

Our analyses also highlight further deficiencies in the Gaus-
sian model. An important feature of the model is that it can
provide a common description of a wide range of spectra from
broadband to narrow. However, as we show in Fig. §, chro-
maticities in the red and purple region of the color gamut can-
not be realized by a simple Gaussian. This issue was noted
previously by Mizokami et al. in the failure of the predictions
for the Abney effect at long wavelengths [16]. Moreover, to
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generate predictions for the Abney effect along the extraspec-
tral line, they had to elaborate the model by using inverted
Gaussians with negative minima (so that the modeled spec-
trum had two components corresponding to the inverted
tails). Notably, this again generated constant hue loci that
were qualitatively consistent with the Abney effect. However,
these problems suggest that a simple Gaussian inference
could not be applicable to all regions of color space, in the
same way that broadband basis functions cannot extend to
narrowband signals.

Finally, an important question remains how the visual sys-
tem could learn or why it should adopt any inference about
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the higher order shape of color spectra beyond the relative
activity of the cones. Our evidence is only circumstantial in
that such inferences have proven to successfully predict many
aspects of visual coding, and specifically that assuming this
inference for color allowed us to qualitatively predict which
cone signals would be associated with a common hue [16].
Understanding how this inference could be achieved would
require analysis of the information and mechanisms that could
allow the visual system to learn and thus compensate for its
spectral sensitivity. In turn, understanding whether and why
the visual system might adopt this assumption would benefit
from analyses of how natural spectra vary in purity under
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(Color online) Fits to the reflectance spectra with the illuminant basis functions and vice versa. Left, mean rms error; right, mean



Y. Mizokami and M. A. Webster Vol. 29, No. 2 / February 2012 / J. Opt. Soc. Am. A Al7

0.7 Original 0.7 Gaussian fit 0.7 Linear fit
0.6 0.6 0.6 1
0.5 0.5 . 0.5
0.4 0.4 T, 041
N N & N
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 — T 0 —————— 0 ————————
0 01 02 03 04 05 06 07 0 01 02 03 04 05 06 07 0 01 02 03 04 05 06 07
X X X
100~ Original 100+ Gaussian fit 100 - Linear fit
'."';}:_"{
] R L T KO | |
50 St 50 50
RN e
Bad &
Q 04 ) 33 *Q 04 N 04
wy b
R
LR ¥
-50- ° -50- . -50
-100 ; : T , -100 . . : 1 =100 T T , )
-100  -50 0 50 100 -100 50 0 50 100 -100 50 0 50 100
* * *
a a a

Fig. 7. (Color online) Chromaticity coordinates for the actual Munsell spectra under illuminant C (left), or from the best-fitting Gaussian (middle)
or linear (right) approximations. Coordinates are shown in the CIE 1931 xy chromaticity diagram (top) or the CIE 1976 a*b* plane (bottom).
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Fig. 8. (a) Gamut of chromaticities achievable with positive Gaussian spectra forming peaks (black) or troughs (red), sampled for peak intervals
of 1 nm and standard deviation intervals of 5 nm. Gamut achievable with positive and negative Gaussian spectra (blue) is also shown. (b) Gamut for
all-positive reflectance functions for the linear reflectance model (black) and the gamut achievable with positive and negative linear spectra (blue).
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